



# COVER CROPS IN THE HOME GARDEN

**Nature's Soil  
Builders**

# What are Cover Crops?



Not grown for harvest or sale—cover crops stay in the garden to protect and improve soil



An Old  
Practice with  
Modern  
Benefits

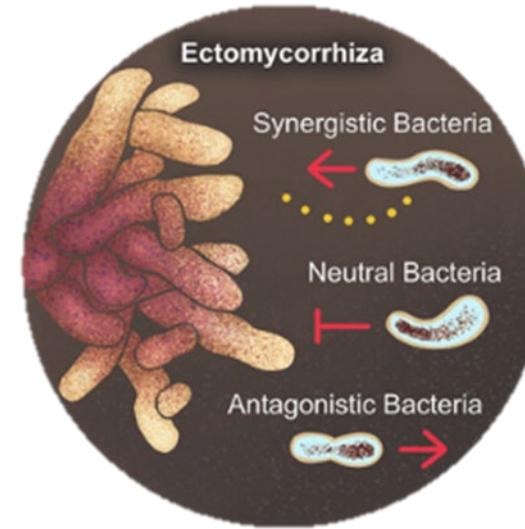
## Cover Crop



This Photo by Unknown Author is licensed under CC BY-NC

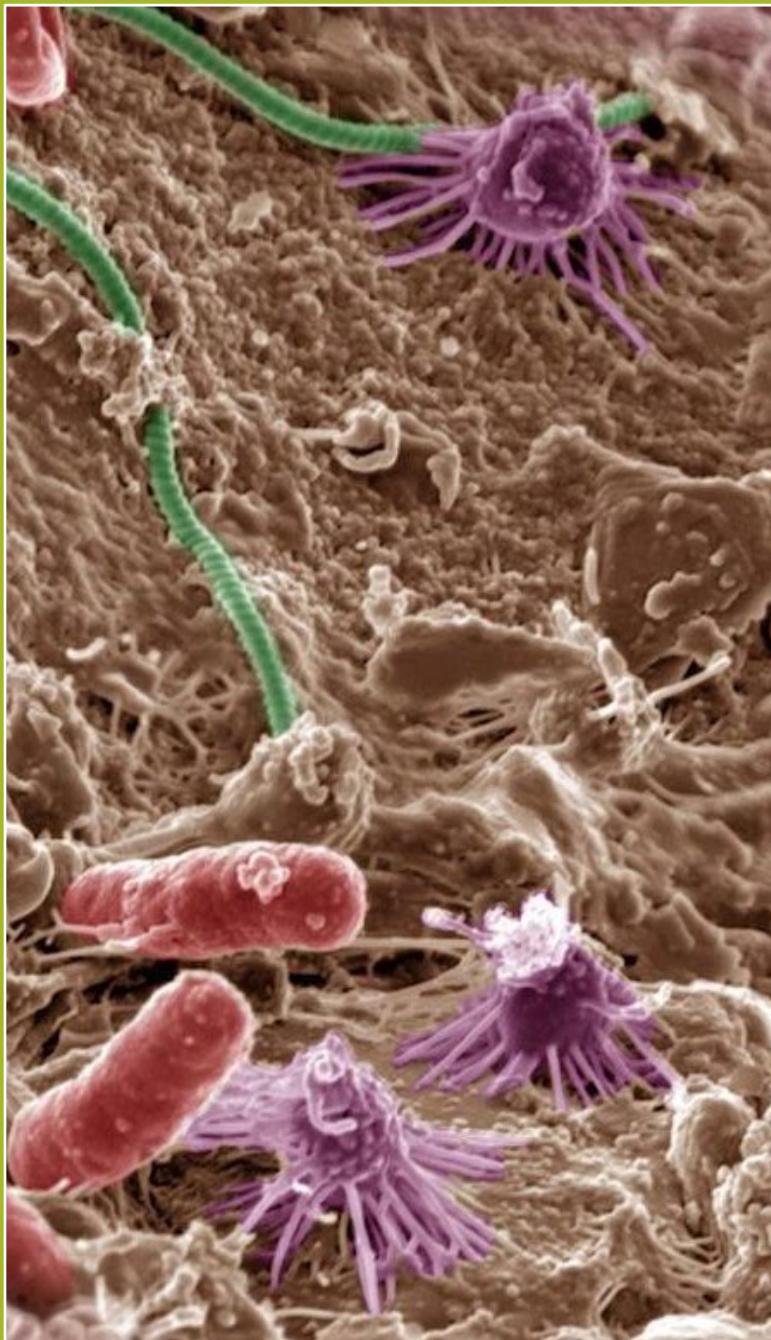
- Plants grown to protect and improve soil (“green manure”)
- Benefits: more sustainable gardens
- Reduce erosion and suppress weeds
- Retain soil moisture
- Increase organic matter and long-term fertility
- Reduce fertilizer needs (legumes provide natural nitrogen)




# ORGANIC MATTER

---

Made up of the Cover Crop


# Why This Matters

- Healthy soil is alive with microbes, fungi, and organic matter
- Soil building is ongoing, not a one-and-done process
- Organic matter continually decomposes, so it must be replenished



Cover crops + mycorrhizae/bacteria = synergistic partners

Improve nutrient cycling—Build soil structure—Increase plant resilience



# What Microbes Do for Soil

- 1 Recycle nutrients
- 2 Build soil structure
- 3 Support Plant Health
- 4 Boost fertility
- 5 Form partnerships

# How Cover Crops, Legumes, and Mycorrhizae Interact to Improve Soil

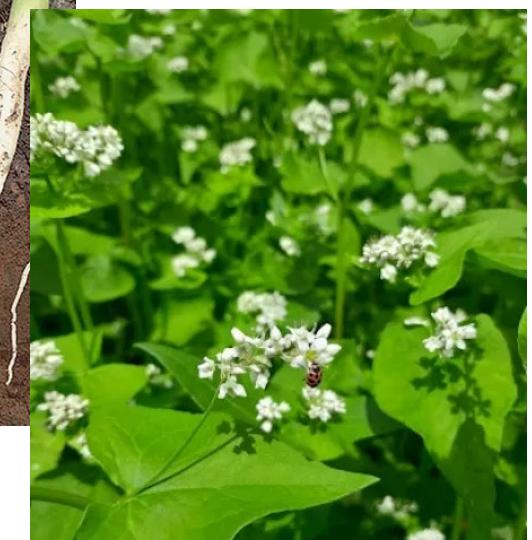
- **Root Systems:** Fine roots of cover crops absorb excess moisture, stabilize soil, and prevent erosion
- **Legumes:** Clover, vetch, and other legumes fix atmospheric nitrogen through root nodules, naturally enriching soil.
- **Mycorrhizae:** Cover crops boost beneficial fungi that form symbiotic root relationships.
- **Glomalin:** This plant–fungal glycoprotein binds soil particles, improving structure and stability.
- **Uptake:** Mycorrhizal networks increase water and nutrient absorption.



# Types of Cover Crops

- **Legumes** –clover, vetch




- **Grasses/Grains** –rye, oats



- **Brassicas** –radish, mustard



- **Broadleaves/Herbs** –buckwheat





This Photo by Unknown Author is licensed under CC BY

**REMEMBER:  
LEGUMES ADD NITROGEN; NON-LEGUMES  
PROTECT AND CONDITION THE SOIL**

---



# Legumes



## WHAT DO THEY DO?

- Fix nitrogen from the air into the soil by root nodules
- Reduces fertilizer needs
- Build soil fertility naturally for future crops
- Encourage beneficial microbes and mycorrhizal fungi activity



**Improve soil structure with fine root systems that add organic matter as they decompose.**  
**Best for: Improving soil nutrients and preparing beds for heavy-feeding crops (like tomatoes or corn)**

# Grasses and Grains

## What they do:

- Provide **excellent erosion control** and **root mass** that stabilizes soil
- **Suppress weeds** by shading and outcompeting them
- **Scavenge leftover nutrients**, preventing nutrient leaching over winter
- Add **organic matter** and improve **soil tilth** when tilled under or left to decompose

Best for: Holding soil over winter and adding long-term organic matter





# Brassicas

## What they do:

- Act as natural soil tillers—deep taproots break up compacted soil layers (“bio-drilling”)
- Improve water infiltration and root penetration for future crops
- Help control pests and diseases (especially mustard, which releases natural biofumigants)
- Capture nutrients from deeper soil layers

**Best for: Breaking up hardpans, loosening soil, and reducing soilborne pests**



CC BY-SA by Unknown Author is licensed under <https://creativecommons.org/licenses/by-sa/4.0/>

## Broadleaves/Herbs

### What They Do

- Grow quickly, providing rapid weed suppression (allelopathy)
- Add biodiversity and attract pollinators and beneficial insects such as parasitoids
- Contribute easily decomposable organic matter to boost soil biology
- Scavenge phosphorus and make it more available to plants
- Serve as an excellent smother crop between plantings or in idle garden beds

**Best for:** Short-term cover between crops and attracting beneficial insects



# Common Cool-Season Options

Planted in fall, grows through winter

- Cereal rye
- Winter wheat
- Oats
- Hairy vetch
- Crimson clover



Cereal Rye, NRCS

# Common Warm-Season Options

Planted in summer between crops; dies out in winter



- Buckwheat
- Cowpeas
- Sudangrass

# Planting Cover Crops

- Fall - immediately after vegetable harvest
- Remove weeds and plant debris first
- Sow seeds at least 4 weeks before cold weather
- Follow seeding directions for broadcast rates
- Water as needed
- Spring/Summer - between early and late-season crops
- Broadcast seed, rake lightly, and water
- Many seed mixes available for beginners to simplify planting



Photo: Researchgate

# Termination & Use



- Mow, till, or crimp before seeds mature
- Turn under with a fork
- Wait 2-3 weeks before planting vegetables
- For no-till: cut at soil level, leave roots in place

| Common Name     | Family   | Scientific name                                      | Cover crop attributes                                                                                                                                                                                                                                   |
|-----------------|----------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cereal Rye      | Grass    | <i>Secale cereale</i>                                | Well-suited to fall planting. Fibrous root system holds soil together. High biomass production and weed suppression potential. Strong establishment potential. High nutrient capture, low nutrient release.                                             |
| Winter Wheat    | Grass    | <i>Triticum aestivum</i>                             | Well-suited to fall planting. Fibrous root system holds soil together. Produces less biomass than cereal rye. Low seed cost.                                                                                                                            |
| Annual ryegrass | Grass    | <i>Lolium multiflorum</i>                            | Potential for improving productivity of fragipan soils. Excellent forage quality. Strong establishment potential. Can be difficult to terminate. Aggressive weed in wheat and therefore not recommended for fields that may be rotated to winter wheat. |
| Daikon Radish   | Brassica | <i>Raphanus sativus</i><br>var. <i>longipinnatus</i> | Large tap root. Potential to alleviate some soil compaction. High nutrient capture, low nutrient release. Likely will not survive winter. Will not impede spring planting of the cash crop. Minimal weed suppression. High seed cost.                   |
| Turnip          | Brassica | <i>Brassica rapa</i> , <i>Brassica</i> spp.          | Potential to alleviate some soil compaction. Likely will not survive winter. Will not impede spring planting of cash crop. High seed cost.                                                                                                              |
| Crimson Clover  | Legume   | <i>Trifolium incarnatum</i>                          | Legume that will fix and contribute some N to subsequent cash crop. Low soil nutrient capture. Minimal weed suppression potential. High seed cost.                                                                                                      |
| Hairy Vetch     | Legume   | <i>Vicia villosa</i>                                 | Legume that will fix and contribute some N to subsequent cash crop. Produces more biomass than crimson clover. Can be difficult to terminate and plant into. High seed cost.                                                                            |

Table from UKY Extension Publications AGR-240- Table 1. Example of plant species used as cover crops.

# Tips for Success

- Match crop to season & goals
- Prevent reseeding (can become weeds)
- Mix legumes + grasses for multiple benefits  
(example: oats, clover)
- Even small beds benefit



## RESOURCES

# QUESTIONS

- **University of Kentucky Cooperative Extension**
- UK College of Agriculture, Food & Environment fact sheets on cover crops, legumes, and sustainable soil management.
- Example: *ID-113: A Comprehensive Guide to Cover Crops in Kentucky* (UK CES).
- **Sustainable Agriculture Research and Education (SARE)**
- *Managing Cover Crops Profitably, 3rd Edition* (free PDF)
- Excellent reference on cover crop benefits, species, mixes, and management.
- SARE Cover Crops Resource Center
- **NRCS (Natural Resources Conservation Service, USDA)**
- *Cover Crop Termination Guidelines* (NRCS Conservation Practice Standard).
- Guidance on planting, timing, and best practices.
- **University of Kentucky Research**
- Moreno-Cadena, P., Poffenbarger, H., et al. (2023–2024). *Cover crop mixtures improve adaptability to soil nitrogen conditions*.
- UK Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture, Food & Environment.
- **The Penn State University College of Agricultural Sciences**
  - Penn State Extension. Improve Vegetable Garden Soil with Cover Crops
  - Southern Exposure Seed Exchange; Cover Crops for Beginners; <https://blog.southernexposure.com/>
- **University of Maryland Extension**
  - Sara Via, Professor & Climate Extension Specialist, UMD College Park; <https://marylandgrows.umd.edu/2018/06/29/beyond-dead-dirt-healthy-soil-is-alive/Role of Soil Fungus>
  - James J. Hoorman, Assistant Professor and Extension Educator, Agriculture and Natural Resources, Putnam County; Fungi are an important part of the microbial ecology